Application Of The Functional Renormalization Group To Bose Gases: From Linear To Hydrodynamic Fluctuations

PHYSICAL REVIEW B(2018)

引用 6|浏览2
暂无评分
摘要
We study weakly interacting Bose gases using the functional renormalization group with a hydrodynamic effective action. We use a scale-dependent parametrization of the boson fields that interpolates between a Cartesian representation at high momenta and an amplitude-phase one for low momenta. We apply this to Bose gases in two and three dimensions near the superfluid phase transition where they can be described by statistical O(2) models. We are able to give consistent physical descriptions of the infrared regime in both two and three dimensions. In particular, and in contrast to previous studies using the functional renormalization group, we find a stable superfluid phase at finite temperatures in two dimensions. We compare our results for the superfluid and boson densities with Monte-Carlo simulations, and we find they are in reasonable agreement.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要