Multidisciplinary Constraints on the Abundance of Diamond and Eclogite in the Cratonic Lithosphere

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS(2018)

引用 48|浏览26
暂无评分
摘要
Some seismic models derived from tomographic studies indicate elevated shear-wave velocities (4.7km/s) around 120-150km depth in cratonic lithospheric mantle. These velocities are higher than those of cratonic peridotites, even assuming a cold cratonic geotherm (i.e., 35mW/m(2) surface heat flux) and accounting for compositional heterogeneity in cratonic peridotite xenoliths and the effects of anelasticity. We reviewed various geophysical and petrologic constraints on the nature of cratonic roots (seismic velocities, lithology/mineralogy, electrical conductivity, and gravity) and explored a range of permissible rock and mineral assemblages that can explain the high seismic velocities. These constraints suggest that diamond and eclogite are the most likely high-V-s candidates to explain the observed velocities, but matching the high shear-wave velocities requires either a large proportion of eclogite (>50vol.%) or the presence of up to 3vol.% diamond, with the exact values depending on peridotite and eclogite compositions and the geotherm. Both of these estimates are higher than predicted by observations made on natural samples from kimberlites. However, a combination of 20vol.% eclogite and similar to 2vol.% diamond may account for high shear-wave velocities, in proportions consistent with multiple geophysical observables, data from natural samples, and within mass balance constraints for global carbon. Our results further show that cratonic thermal structure need not be significantly cooler than determined from xenolith thermobarometry.
更多
查看译文
关键词
cratonic lithosphere,diamond,eclogite,seismic tomography,petrologic modeling,electrical conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要