Joint Frequency Regulation and Economic Dispatch Using Limited Communication

2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)(2018)

Cited 2|Views9
No score
Abstract
We study the performance of a decentralized integral control scheme for joint power grid frequency regulation and economic dispatch. We show that by properly designing the controller gains, after a power flow perturbation, the control achieves near-optimal economic dispatch while recovering the nominal frequency, without requiring any communication. We quantify the gap between the controllable power generation cost under the decentralized control scheme and the optimal cost, based on the DC power flow model. Moreover, we study the tradeoff between the cost and the convergence time, by adjusting parameters of the control scheme. Communication between generators reduces the convergence time. We identify key communication links whose failures have more significant impacts on the performance of a distributed power grid control scheme that requires information exchange between neighbors.
More
Translated text
Key words
convergence time,distributed power grid control scheme,decentralized integral control scheme,controller gains,power flow perturbation,near-optimal economic dispatch,nominal frequency,controllable power generation cost,optimal cost,DC power flow model,communication links,power grid frequency regulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined