Distinct regulation of in two muscle lineages of the ascidian embryo achieves temporal coordination of muscle development.

DEVELOPMENT(2018)

引用 11|浏览7
暂无评分
摘要
The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.4) contribute to the anterior tail muscle cells, and are consecutively separated from a transcriptionally quiescent germ cell lineage at the 16-and 32-cell stages. Concomitantly, cells of these lineages begin to express Tbx6.b (Tbx6-r.b) at the 16- and 32-cell stages, respectively. Meanwhile, Snail expression begins in these two lineages simultaneously at the 32-cell stage. Here, we show that Snail expression is regulated differently between these two lineages. In the B5.1 lineage, Snail was activated through Tbx6.b, which is activated by maternal factors, including Zic-r.a. In the B6.4 lineage, the MAPK pathway was cell-autonomously activated by a constitutively active form of Raf, enabling Zic-r.a to activate Snail independently of Tbx6.b. As a result, Snail begins to be expressed at the 32-cell stage simultaneously in these two lineages. Such shortcuts might be required for coordinating developmental programs in embryos in which cells become separated progressively from stem cells, including germline cells.
更多
查看译文
关键词
Ascidian,Ciona,Snail,Germline,Raf
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要