Magnetic properties of chromium-doped Ni80Fe20 thin films

Journal of Magnetism and Magnetic Materials(2018)

Cited 9|Views37
No score
Abstract
This paper investigates the properties of thin films of chromium-doped Ni80Fe20 (Permalloy) that could potentially be useful in future low-power magnetic memory technologies. The addition of chromium reduces the saturation magnetization, Ms, which is useful for low-energy switching, but does not significantly degrade the excellent switching properties of the host material even down to 10 K, the lowest temperature measured, in films as thin as 2.5 nm. As an example, an alloy film composed of 15% chromium and 85% Ni80Fe20 has an Ms just over half that of pure Ni80Fe20, with a coercivity Hc less than 4 Oe, an anisotropy field Hk less than 1 Oe, and an easy-axis remanent squareness Mr/Ms of 0.9 (where Mr is the remanent magnetization). Magnetodynamical measurements using a pulsed inductive microwave magnetometer showed that the average Landau Lifshitz damping λ was relatively constant with changing Cr content, but increased significantly for thinner films (λ ≈150 MHz for 11 nm, λ ≈250 MHz for 2.5 nm), and at low bias fields likely due to increased magnetic dispersion. Density functional theory calculations show that chromium reduces Ms by entering the lattice antiferromagnetically; it also increases scattering in the majority spin channel, while adding almost insignificant scattering to the minority channel.
More
Translated text
Key words
ni80fe20,magnetic properties,thin films,chromium-doped
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined