Fracture analysis of a metal to CFRP hybrid with thermoplastic interlayers for interfacial stress relaxation using in situ thermography

Composite Structures(2018)

引用 30|浏览23
暂无评分
摘要
In this work a plane hybrid-structure composed of a metal and a carbon-fiber-reinforced-polymer (CFRP) constituent is introduced. Hereby an interlayer is inserted between the metal and the CFRP constituent, pursuing the task of stress relaxation. In order to study the effect of interfacial stress relaxation several thermoplastics are investigated. In situ passive thermography is used to assess the damage during quasi-static and fatigue mechanical loading. Thus, mechanical properties are correlated with corresponding damage-quantities from non-destructive testing (ndt). These results reveal that transversal cracking and mode-I delamination are the dominant failure processes, which strongly depend on the thermoplastic material. Additional finite element analysis describes strain-energy- and stressconcentrations, which coincide with the observed damage mechanisms and the origins of fracture.
更多
查看译文
关键词
Hybrid,Fatigue,Mechanical testing,Non-destructive testing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要