Understanding self ion damage in FCC Ni-Cr-Fe based alloy using X-ray diffraction techniques

Journal of Nuclear Materials(2018)

引用 1|浏览14
暂无评分
摘要
Using X-ray diffraction line profile analysis (XRDLPA) approach the radiation response of FCC Ni-Cr-Fe based alloy 690 to 1.5 and 3 MeV Ni2+ ion damage was quantified in terms of its microstructural parameters. These microstructural parameters viz. average domain size, microstrain and dislocation density were found to vary anisotropically with fluence. The anisotropic behaviour is mainly attributable to presence of twins in pre-irradiated microstructure. After irradiation, surface roughness increases as a function of fluence attributable to change in surface and sub-surface morphology caused by displacement cascade, defects and sputtered atoms created by incident energetic ion. The radiation hardening in case of 1.5 MeV Ni2+ irradiated specimens too is a consequence of the increase in dislocation density formed by interaction of radiation induced defects with pre-existing dislocations. At highest fluence there is an initiation of saturation.
更多
查看译文
关键词
Radiation damage,Alloy 690,XRDLPA,Nano-indentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要