Molecular Mobility in Amorphous Biobased Poly(ethylene 2,5-furandicarboxylate) and Poly(ethylene 2,4-furandicarboxylate)

MACROMOLECULES(2018)

引用 37|浏览22
暂无评分
摘要
Among all the emergent biobased polymers, poly(ethylene 2,5-furandicarboxylate) (2,5-PEF) seems to be particularly interesting for packaging applications. This work is focused on the investigation of the relaxation dynamics and the macromolecular mobility in totally amorphous 2,5-PEF as well as in the less studied poly(ethylene 2,4furandicarboxylate) (2,4-PEF). Both biopolymers were investigated by differential scanning calorimetry and dielectric relaxation spectroscopy in a large range of temperatures and frequencies. The main parameters describing the relaxation dynamics and the molecular mobility in 2,5-PEF and 2,4-PEF, such as the glass transition temperature, the temperature dependence of the alpha and beta relaxation times, the fragility index, and the apparent activation energy of the secondary relaxation, were determined and discussed. 2,5-PEF showed a higher value of the dielectric strength as compared to 2,4-PEF and other wellknown polyesters, such as poly(ethylene terephthalate), which was confirmed by molecular dynamics simulations. According to the Angell's classification of glass-forming liquids, amorphous PEFs behave as stronger glass-formers in comparison with other polyesters, which may be correlated to the packing efficiency of the macromolecular chains and therefore to the free volume and the barrier properties.
更多
查看译文
关键词
molecular mobility,amorphous
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要