Structural insights into the catalytic mechanism of cysteine (hydroxyl) lyase from the hydrogen-sulfide producing oral pathogen, Fusobacterium nucleatum.

Biochemical Journal(2018)

引用 8|浏览6
暂无评分
摘要
Hydrogen sulfide (H 2 S) plays important roles in the pathogenesis of periodontitis. Oral pathogens typically produce H 2 S from l-cysteine in addition to pyruvate and N H 4 + . However, fn1055 from Fusobacterium nucleatum subsp. nucleatum ATCC 25586 encodes a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the production of H 2 S and l-serine from l-cysteine and H 2 O, an unusual cysteine (hydroxyl) lyase reaction (β-replacement reaction). To reveal the reaction mechanism, the crystal structure of substrate-free Fn1055 was determined. Based on this structure, a model of the l-cysteine-PLP Schiff base suggested that the thiol group forms hydrogen bonds with Asp 232 and Ser 74 , and the substrate α-carboxylate interacts with Thr 73 and Gln 147 . Asp 232 is a unique residue to Fn1055 and its substitution to asparagine (D232N) resulted in almost complete loss of β-replacement activity. The D232N structure obtained in the presence of l-cysteine contained the α-aminoacrylate-PLP Schiff base in the active site, indicating that Asp 232 is essential for the addition of water to the α-aminoacrylate to produce the l-serine-PLP Schiff base. Rapid-scan stopped-flow kinetic analyses showed an accumulation of the α-aminoacrylate intermediate during the reaction cycle, suggesting that water addition mediated by Asp 232 is the rate-limiting step. In contrast, mutants containing substitutions of other active-site residues (Ser 74 , Thr 73 , and Gln 147 ) exhibited reduced β-replacement activity by more than 100-fold. Finally, based on the structural and biochemical analyses, we propose a mechanism of the cysteine (hydroxyl) lyase reaction by Fn1055. The present study leads to elucidation of the H 2 S-producing mechanism in F. nucleatum .
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要