Surface States in Ternary CdSSe Quantum Dot Solar Cells

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY(2017)

引用 4|浏览22
暂无评分
摘要
Ternary CdSSe quantum dot-sensitized solar cells (QDSCs) have demonstrated advantages such as wide absorption ranges and tunable band structures. However, the oxygen additives absorbed on such multicomponent quantum dot (QD) surfaces induce band bending at the TiO2/CdSSe interface and prevent charge transport in QDSCs, as determined via X-ray photoelectron spectroscopy (XPS) and synchrotron-based X-ray Absorption Near-Edge Structure (XANES) analysis. Annealing of TiO2/CdSSe QDs photoanodes was conducted at different temperatures under Ar atmospheres to eliminate oxygen additives and interfacial band bending. The short-circuit current (Jsc) of the annealed ternary CdSSe QDSCs is obviously improved, whereas the TiCl4 treatment and MgO coating of the TiO2 nanocrystals are assisted by the annealing to compensate for the loss of opencircuit voltage (V-oc) and fill factor (FF). Ternary CdSSe QDSCs with efficiencies of 4.72% have been achieved using the optimized
更多
查看译文
关键词
Surface States,Ternary,Quantum Dot,Solar Cell,Synchrotron
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要