Metformin Synergizes with BCL-XL/BCL-2 Inhibitor ABT-263 to Induce Apoptosis Specifically in p53-Defective Cancer Cells.

MOLECULAR CANCER THERAPEUTICS(2017)

Cited 18|Views23
No score
Abstract
p53 deficiency, a frequent event in multiple kinds of malignancies, decreases the sensitivity of diverse targeted chemotherapeutics including the BCL-XL/BCL-2 inhibitor ABT-263. Loss of p53 function can activate mTOR complex 1 (mTORC1), which may make it a vulnerable target. Metformin has shown antineoplastic efficiency partially through suppressing mTORC1. However, it remains unknown whether mTORC1 activation confers ABT-263 resistance and whether metformin can overcome it in the p53-defective contexts. In this study, we for the first time demonstrated that metformin and ABT-263 synergistically elicited remarkable apoptosis through orchestrating the proapoptotic machineries in various p53-defective cancer cells. Mechanistic studies revealed that metformin sensitized ABT-263 via attenuating mTORC1-mediated cap-dependent translation of MCL-1 and survivin and weakening internal ribosome entry site (IRES) dependent translation of XIAP. Meanwhile, ABT-263 sensitized metformin through disrupting the BCL-XL/BIM complex. However, metformin and ABT-263 had no synergistic killing effect in p53 wild-type (p53-WT) cancer cells because the cotreatment dramatically induced the senescence-associated secretory phenotype (SASP) in the presence of wild type p53, and SASP could aberrantly activate the AKT/ERK-mTORC1-4EBP1-MCL-1/survivin signaling axis. Blocking the axis using corresponding kinase inhibitors or neutralizing antibodies against different SASP components sensitized the cotreatment effect of metformin and ABT-263 in p53-WT cancer cells. The in vivo experiments showed that metformin and ABT-263 synergistically inhibited the growth of p53-defective (but not p53-WT) cancer cells in tumor xenograft nude mice. These results suggest that the combination of metformin and ABT-263 may be a novel targeted therapeutic strategy for p53-defective cancers. (C) 2017 AACR.
More
Translated text
Key words
induce apoptosis,cancer cells
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined