Olfactory Receptors Are Required For Social Behavior And Neural Plasticity In Ants, As Evidenced By CRISPR-Mediated Gene Knockout

bioRxiv(2017)

引用 2|浏览17
暂无评分
摘要
The chemosensory system is key to establishing and maintaining social structure in eusocial insects. Ants exhibit cooperative colonial behaviors reflective of an advanced form of sociality with an extensive dependency on communication. Cuticular hydrocarbons (CHCs) serve as pheromones and cues that regulate multiple aspects of social interactions and behaviors in ants. The perception of CHCs entails odorant receptor neurons (ORNs) that express specific odorant receptors (ORs) encoded by a dramatically expanded Or gene family in ants. Until recently, studies of the biological functions of ORs in eusocial insects were stymied by the lack of genetic tools. In most eusocial insect species, only one or a few queens in a colony can transmit the genetic information to their progeny. In contrast, any worker in the ant Harpegnathos saltator can be converted into a gamergate (pseudo-queen), and used as a foundress to engender an entire new colony and be crossed for genetic experiments. This feature facilitated CRISPR-Cas9 gene targeting to generate a germline mutation in the orco gene that encodes the obligate co-receptor whose mutation should significantly impact ant olfaction. Our results show that Orco exhibits a conserved role in the perception of general odorants but also a role in reproductive physiology and social behavior plasticity in ants. Surprisingly, and in contrast to other insect systems, the loss of OR functionality also dramatically reduces the development of the ant antennal lobe where ORNs project. Taken together, these findings open the possibility of studying the genetics of eusociality and provide inroads towards understanding the function of the expanded ORs family in eusocial insects in regulating caste determination, social communication and neuronal plasticity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要