miR‑146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF‑κB signaling by targeting TRAF6.

Oncology reports(2019)

Cited 22|Views13
No score
Abstract
The aim of the present study was to investigate whether miRNA‑146a regulated the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis. miR‑146a expression was increased in human cervical cancer. Both overall survival (OS) and disease‑free survival (DFS) of low miR‑146a expression were higher than those of high miR‑146a expression. Additionally, IL‑17a expression was lower in patients with high miR‑146a expression compared to that of patients with lower miR‑146a expression. In a co‑culture of cervical cancer and CD4+ T cells, downregulation of miR‑146a inhibited cell growth and induced apoptosis of cervical cancer cells, while overexpression of miR‑146a promoted cell growth and reduced apoptosis of cervical cancer cells. Downregulation of miR‑146a induced TRAF6 and NF‑κB protein expression, increased IL‑6, IL‑17A and IL‑21 levels, and enhanced p‑STAT3 protein expression. The inhibition of TRAF6 attenuated the effects of anti‑miR‑146a on the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis. Collectively, miR‑146a regulated the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF‑κB signaling by targeting TRAF6. miR‑146a may function as an oncogene in cervical cancer via Th17 cell differentiation by targeting TRAF6.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined