Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique

NATURAL HAZARDS AND EARTH SYSTEM SCIENCES(2017)

Cited 22|Views4
No score
Abstract
In the Lesser Antilles, coastal inundations from hurricane-induced storm surges pose a great threat to lives, properties and ecosystems. Assessing current and future storm surge hazards with sufficient spatial resolution is of primary interest to help coastal planners and decision makers develop mitigation and adaptation measures. Here, we use wave-current numerical models and statistical methods to investigate worst case scenarios and 100-year surge levels for the case study of Martinique under present climate or considering a potential sea level rise. Results confirm that the wave setup plays a major role in the Lesser Antilles, where the narrow island shelf impedes the piling-up of large amounts of wind-driven water on the shoreline during extreme events. The radiation stress gradients thus contribute significantly to the total surge - up to 100% in some cases. The nonlinear interactions of sea level rise (SLR) with bathymetry and topography are generally found to be relatively small in Martinique but can reach several tens of centimeters in low-lying areas where the inundation extent is strongly enhanced compared to present conditions. These findings further emphasize the importance of waves for developing operational storm surge warning systems in the Lesser Antilles and encourage caution when using static methods to assess the impact of sea level rise on storm surge hazard.
More
Translated text
Key words
storm surge hazard,sea level rise,lesser antilles case study
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined