Path-Loss Channel Models For Receiver Spatial Diversity Systems At 2.4 Ghz

INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION(2017)

引用 8|浏览17
暂无评分
摘要
This article proposes receiver spatial diversity propagation path-loss channel models based on real-field measurement campaigns that were conducted in a line-of-site (LOS) and non-LOS (NLOS) indoor laboratory environment at 2.4 GHz. We apply equal gain power combining (EGC), coherent and noncoherent techniques, on the received signal powers. Our empirical data is used to propose spatial diversity propagation path-loss channel models using the log-distance and the floating intercept path-loss models. The proposed models indicate logarithmic-like reduction in the path-loss values as the number of diversity antennas increases. In the proposed spatial diversity empirical path-loss models, the number of diversity antenna elements is directly accounted for, and it is shown that they can accurately estimate the path-loss for any generalized number of receiving antenna elements for a given measurement setup. In particular, the floating intercept-based diversity path-loss model is vital to the 3GPP and WINNER II standards since they are widely utilized in multi-antenna-based communication systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要