Origin Of The Critical Temperature Discontinuity In Superconducting Sulfur Under High Pressure

PHYSICAL REVIEW B(2017)

引用 18|浏览19
暂无评分
摘要
Elemental sulfur shows a superconducting phase at high pressure (above 100 GPa), with critical temperatures that rise up to 20 K [Phys. Rev. B 65, 064504 (2002); Nature (London) 525, 73 (2015)] and presenting a jump at about 160 GPa, close to a structural phase transition to the beta-Po phase. In this work we present a theoretical and fully ab initio characterization of sulfur based on superconducting density functional theory (SCDFT), focusing in the pressure range from 100 to 200 GPa. Calculations result in very good agreement with available experiments and point out that the origin of the critical temperature discontinuity is not related to the structural phase transition but induced by an electronic Lifshitz transition. This brings a strongly (interband) coupled electron pocket available for the superconducting condensation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要