"SZ spectroscopy" in the coming decade: Galaxy cluster cosmology and astrophysics in the submillimeter

arXiv: Cosmology and Nongalactic Astrophysics(2019)

Cited 1|Views4
No score
Abstract
Sunyaev-Zeldovich (SZ) effects were first proposed in the 1970s as tools to identify the X-ray emitting hot gas inside massive clusters of galaxies and obtain their velocities relative to the cosmic microwave background (CMB). Yet it is only within the last decade that they have begun to significantly impact astronomical research. Thanks to the rapid developments in CMB instrumentation, measurement of the dominant thermal signature of the effects has become a routine tool to find and characterize large samples of galaxy clusters and to seek deeper understanding of several important astrophysical processes via high-resolution imaging studies of many targets. With the notable exception of the Planck satellite and a few combinations of ground-based observatories, much of this SZ revolution has happened in the photometric mode, where observations are made at one or two frequencies in the millimeter regime to maximize the cluster detection significance and minimize the foregrounds. Still, there is much more to learn from detailed and systematic analyses of the spectra across multiple wavelengths, specifically in the submillimeter (u003e300 GHz) domain. The goal of this Science White Paper is to highlight this particular aspect of research, point out what new and potentially groundbreaking insights can be obtained from these studies, and emphasize why the coming decade can be a golden era for spectral measurements.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined