Nanotextured phase coexistence in the correlated insulator V2O3

Nature Physics(2017)

Cited 161|Views65
No score
Abstract
The insulator–metal transition remains among the most studied phenomena in correlated electron physics. However, the spontaneous formation of spatial patterns amidst insulator–metal phase coexistence remains poorly explored on the meso- and nanoscales. Here we present real-space evolution of the insulator–metal transition in a V2O3 thin film imaged at high spatial resolution by cryogenic near-field infrared microscopy. We resolve spontaneously nanotextured coexistence of metal and correlated Mott insulator phases near the insulator–metal transition (∼160–180 K) associated with percolation and an underlying structural phase transition. Augmented with macroscopic temperature-resolved X-ray diffraction measurements of the same film, a quantitative analysis of nano-infrared images acquired across the transition suggests decoupling of electronic and structural transformations. Persistent low-temperature metallicity is accompanied by unconventional critical behaviour, implicating the long-range Coulomb interaction as a driving force through the film’s first-order insulator–metal transition. A near-field optical microscopy study provides nanoscale insight into an insulator-to-metal transition and the interplay with a neighbouring structural phase transition in a prototypical correlated electron material.
More
Translated text
Key words
Electronic properties and materials,Phase transitions and critical phenomena,Scanning probe microscopy,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined