N-(2-Methyl-Indol-1h-5-Yl)-1-Naphthalenesulfonamide: A Novel Reversible Antimitotic Agent Inhibiting Cancer Cell Motility

BIOCHEMICAL PHARMACOLOGY(2016)

引用 7|浏览10
暂无评分
摘要
A series of compounds containing the sulfonamide scaffold were synthesized and screened for their in vitro anticancer activity against a representative panel of human cancer cell lines, leading to the identification of N-(2-methyl-1H-indo1-5-yl)-1-naphthalenesulfonamide (8e) as a compound showing a remarkable activity across the panel, with IC50 values in the nanomolar-to-low micromolar range. Cell cycle distribution analysis revealed that 8e promoted a severe G2/M arrest, which was followed by cellular senescence as indicated by the detection of senescence-associated p-galactosidase (SA-beta-gal) in 8e-treated cells. Prolonged 8e treatment also led to the onset of apoptosis, in correlation with the detection of increased Caspase 3/7 activities. Despite increasing gamma-H2A.X levels, a well-established read-out for DNA double-strand breaks, in vitro DNA binding studies with 8e did not support interaction with DNA. In agreement with this, 8e failed to activate the cellular DNA damage checkpoint. Importantly, tubulin staining showed that Be promoted a severe disorganization of microtubules and mitotic spindle formation was not detected in 8e-treated cells. Accordingly, 8e inhibited tubulin polymerization in vitro in a dose-dependent manner and was also able to robustly inhibit cancer cell motility. Docking analysis revealed a compatible interaction with the colchicine-binding site of tubulin. Remarkably, these cellular effects were reversible since disruption of treatment resulted in the reorganization of microtubules, cell cycle re-entry and loss of senescent markers. Collectively, our data suggest that this compound may be a promising new anticancer agent capable of both reducing cancer cell growth and motility. (C) 2016 Elsevier Inc. All rights reserved.
更多
查看译文
关键词
Sulfonamides,Cancer,Mitosis,Tubulin,Cell motility,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要