Solvent, coordination and hydrogen-bond effects on the chromic luminescence of the cationic complex [(phen)(H2O)Re(CO)3]+

NEW JOURNAL OF CHEMISTRY(2016)

引用 13|浏览10
暂无评分
摘要
The [(phen)((HO)-O-2)Re(CO)(3)](+)(CF3SO3)(-) salt, 1(+)(CF3SO3-), has been crystallized in the form of two new solvates, [(phen)(H2O)Re(CO)(3)](+)(CF3SO3)(-)center dot(C4H8O)(0.5) and [(phen)(H2O)Re(CO)(3)](+)(CF3SO3)(-)center dot CH2Cl2. The structures, as determined by single-crystal X-ray diffraction, show intense hydrogen bonding between the coordinated water molecule on 1(+) and the triflate oxygen atoms, with O-water center dot center dot center dot O-triflate in the range from 2.608(13) to 2.972(13) angstrom. This feature, to the best of our knowledge, is preserved for each solvate of 1(+)(CF3SO3-). The spectroscopic characterization of 1(+)(CF3SO3-) in solution together with DFT and TD-DFT results suggest that its photophysical behavior depends on the solvent polarity, as normally found for MLCT, but additionally, on the coordinating and hydrogen bonding ability of the solvent. The results suggest that in low-polarity, non-coordinating and non-hydrogen bonding solvents, the intimate association observed in the solid between 1(+)(CF3SO3-) is preserved, in contrast to coordinating solvents that may replace the coordinated water. Finally, weakly coordinating but hydrogen bonding solvents may dissociate the ionic pair units. The sum of all these effects leads to an apparent unusual solvent dependency of the luminescence emission with hypsochromic or bathochromic shifts depending on the coordinating ability of the solvent.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要