Global sensitivity analysis to characterize operational limits and prioritize performance goals of capacitive deionization technologies.

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2019)

引用 45|浏览28
暂无评分
摘要
Capacitive deionization (CDI) technologies couple electronic and ionic charge storage, enabling improved thermodynamic efficiency of brackish desalination by recovering energy released during discharge. However, insight into CDI has been limited by discrete experimental observations at low desalination depths (Delta c, typically reducing influent salinity by 10 mM or less). In this study, the performance and sensitivity of three common CDI configurations [standard CDI, membrane CDI (MCDI), and flowable electrode CDI (FCDI)] were evaluated across the operational and material design landscape by varying eight common input parameters (electrode thickness, influent concentration, current density, electrode flow rate, specific capacitance, contact resistance, porosity, and fixed charge). All combinations of designs were evaluated for two influent concentrations with a calibrated and validated one-dimensional (1-D) porous electrode model. Sensitivity analyses were carried out via Monte Carlo and Morris methods, focusing on six performance metrics. Across all performance metrics, high sensitivity was observed to input parameters which impact cycle length (current, resistance, and capacitance). Simulations demonstrated the importance of maintaining both charge and round-trip efficiencies, which limit the performance of CDI and FCDI, respectively. Accounting for energy recovery, only MCDI was capable of operating at thermodynamic efficiencies similar to reverse osmosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要