Stimulated Co Dissociation And Surface Graphitization By Microfocused X-Ray And Electron Beams

JOURNAL OF PHYSICAL CHEMISTRY C(2019)

引用 6|浏览21
暂无评分
摘要
The irradiation with photons or electrons can dramatically influence the chemical stability of a molecule, either free or adsorbed on a surface, inducing its fragmentation or desorption. We revisit here the exostimulated dissociation of CO, a prototypical case, choosing hcp thin cobalt films as model support. Intense, microfocused soft X-rays or electron beams are used to locally stimulate CO dissociation. Fast-XPS gives direct access to the adsorbates' chemical state and coverage during irradiation, enabling the kinetics of the process to be monitored in real time. The energy-dependent cross sections for photon and electron stimulated molecular dissociation and desorption are estimated for a fixed initial CO coverage of 1/3 ML. In the soft X-ray regime, the desorption channel always prevails over dissociation and is significantly enhanced above the 0 K edge. The relative dissociation probability increases steadily with increasing photon energy, reaching 30% at 780 eV. Furthermore, we show that low energy electrons in the range 50 to 200 eV dissociate CO more efficiently than X-rays. The prolonged irradiation of the Co surface in CO ambient is found to produce a continuous increase of the carbon coverage, initially promoting the formation of carbides and subsequently accumulating sp(2) carbon on the surface. Far from being a detrimental effect, the CO stimulated dissociation can be exploited to lithographically graft carbon-rich microscopic patterns on Co, with resolution well into the nanometer scale. A brief thermal treatment following irradiation results in the formation of a graphitic carbon overlayer, which effectively protects Co from oxidation upon exposure to ambient conditions, preserving its out-of-plane magnetic anisotropy and domain configuration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要