Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites

CHEMICAL ENGINEERING JOURNAL(2019)

引用 200|浏览16
暂无评分
摘要
Electrospinning is widely used to fabricate nanoscale fibers from natural and synthetic polymers. Electrospun fibers have potential application in tissue engineering as well as in the design of catalysts, batteries, electronic sensors, packages, filtration membranes, medical implants, wound dressings, and medical fabrics, and drug delivery systems. Fibers offer a porous structure with a high surface area to volume ratio, which is a highly desired property in various applications. Integrating other materials such as metals nanoparticles or ceramics in electrospun fibers is emerging as a route to new nanoscale composites materials with enhanced functional properties. Incorporating nanoparticles on or within the nanofibrous scaffold impart functional properties with implication for catalysis, optoelectronics, and biomedicine. Indeed, these electrospun polymer-nanoparticles composites are a new frontier in biomedicine, where their relevance to tissue engineering, wound dressing, drug delivery is emerging. Here, we summarise advances in electrospun tissue engineering and wound dressing platforms developed from polymer-titanium dioxide nanocomposites.
更多
查看译文
关键词
Electrospinning,Nanofibre,Nanocomposite,Titanium dioxide,Tissue engineering,Wound dressing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要