Understanding Thermodynamic and Kinetic Contributions in Expanding the Stability Window of Aqueous Electrolytes

Chem(2018)

引用 169|浏览16
暂无评分
摘要
Aqueous electrolytes come with an intrinsic narrow electrochemical stability window (1.23 V). Expanding this window represents significant benefits in both fundamental science and practical battery applications. Recent breakthroughs made via super-concentration have resulted in >3.0 V windows, but fundamental understanding of the related mechanism is still absent. In the present work, we examined the widened window (2.55 V) of a super-concentrated (unsaturated) aqueous solution of LiNO3 through both theoretical and spectral analyses and discovered that a local structure of intimate Li+-water interaction arises at super-concentration, generating (Li+(H2O)2)n polymer-like chains to replace the ubiquitous hydrogen bonding between water molecules. Such structure is mainly responsible for the expanded electrochemical stability window. Further theoretical and experimental analyses quantitatively differentiate the contributions to this window, identifying the kinetic factor (desolvation) as the main contributor. Such molecular-level and quantitative understanding will further assist in tailor designing more effective approaches to stabilizing water electrochemically.
更多
查看译文
关键词
SDG7: Affordable and clean energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要