Biological Control Of Potato Soft Rot Caused By Dickeya Solani And The Survival Of Bacterial Antagonists Under Cold Storage Conditions

PLANT PATHOLOGY(2019)

引用 28|浏览16
暂无评分
摘要
Dickeya and Pectobacterium are responsible for causing blackleg of plants and soft rot of tubers in storage and in the field, giving rise to losses in seed potato production. In an attempt to improve potato health, biocontrol activity of known and putative antagonists was screened using in vitro and in planta assays, followed by analysis of their persistence at various storage temperatures. Most antagonists had low survival on potato tuber surfaces at 4 degrees C. The population dynamics of the best low-temperature tolerant strain and also the most efficient antagonist, Serratia plymuthica A30, along with Dickeya solani as target pathogen, was studied with TaqMan real-time PCR throughout the storage period. Tubers of three potato cultivars were treated in the autumn with the antagonist and then inoculated with D. solani. Although the cell densities of both strains decreased during the storage period in inoculated tubers, the pathogen population was always lower in the presence of the antagonist. The treated tubers were planted in the field the following growing season to evaluate the efficiency of the bacterial antagonist for controlling disease incidence. The potato endophyte S. plymuthica A30 protected potato plants by reducing blackleg development on average by 58.5% and transmission to tuber progeny as latent infection by 47-75%. These results suggest that treatment of potato tubers with biocontrol agents after harvest can reduce the severity of soft rot disease during storage and affect the transmission of soft rot bacteria from mother tubers to progeny tubers during field cultivation.
更多
查看译文
关键词
biocontrol agent, blackleg, population dynamics, Serratia plymuthica A30, TaqMan real-time PCR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要