High-Reynolds-number turbulent cavity flow using the lattice Boltzmann method

PHYSICAL REVIEW E(2018)

引用 20|浏览7
暂无评分
摘要
We present a boundary condition scheme for the lattice Boltzmann method that has significantly improved stability for modeling turbulent flows while maintaining excellent parallel scalability. Simulations of a three-dimensional lid-driven cavity flow are found to be stable up to the unprecedented Reynolds number Re = 5 x 10(4) for this setup. Excellent agreement with energy balance equations, computational and experimental results are shown. We quantify rises in the production of turbulence and turbulent drag, and determine peak locations of turbulent production.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要