High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes

Nature Communications(2018)

Cited 206|Views47
No score
Abstract
High-throughput single-cell RNA-Sequencing is a powerful technique for gene expression profiling of complex and heterogeneous cellular populations such as the immune system. However, these methods only provide short-read sequence from one end of a cDNA template, making them poorly suited to the investigation of gene-regulatory events such as mRNA splicing, adaptive immune responses or somatic genome evolution. To address this challenge, we have developed a method that combines targeted long-read sequencing with short-read based transcriptome profiling of barcoded single cell libraries generated by droplet-based partitioning. We use Repertoire And Gene Expression sequencing (RAGE-seq) to accurately characterize full-length T cell (TCR) and B cell (BCR) receptor sequences and transcriptional profiles of more than 7,138 lymphocytes sampled from the primary tumour and draining lymph node of a breast cancer patient. With this method we show that somatic mutation, alternate splicing and clonal evolution of T and B lymphocytes can be tracked across these tissue compartments. Our results demonstrate that RAGE-Seq is an accessible and cost-effective method for high-throughput deep single cell profiling, applicable to a wide range of biological challenges.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined