Chrome Extension
WeChat Mini Program
Use on ChatGLM

Feasibility Study On The Design And Synthesis Of Functional Porous Organic Polymers With Tunable Pore Structure As Metallocene Catalyst Supports

Xiong Wang, Cuiling Zhang, Wenxia Liu, Pingsheng Zhang

POLYMERS(2018)

Cited 10|Views7
No score
Abstract
Porous organic polymers (POPs) are highly versatile materials that find applications in adsorption, separation, and catalysis. Herein, a feasibility study on the design and synthesis of POP supports with a tunable pore structure and high ethylene-polymerization activity was conducted by the selection of functional comonomers and template agents, and control of cross-linking degree of their frameworks. Functionalized POPs with a tunable pore structure were designed and synthesized by a dispersion polymerization strategy. The functional comonomers incorporated in the poly(divinylbenzene) (PDVB)-based matrix played a significant role in the porous structure and particle morphology of the prepared polymers, and a specific surface area (SSA) of 10-450 m(2)/g, pore volume (PV) of 0.05-0.5 cm(3)/g, bulk density with a range of 0.02-0.40 g/cm(3) were obtained by the varied functional comonomers. Besides the important factors of thermodynamic compatibility of the selected solvent system, other factors that could be used to tune the pore structure and morphology of the POP particles have been also investigated. The Fe3O4 nanoaggregates as a template agent could help improve the porous structure and bulk density of the prepared POPs, and the highly cross-linking networks can dramatically increase the porous fabric of the prepared POPs. As for the immobilized metallocene catalysts, the pore structure of the prepared POPs had a significant influence on the loading amount of the Zr and Al of the active sites, and the typically highly porous structure of the POPs would contribute the immobilization of the active species. High ethylene-polymerization activity of 8033 kg PE/mol Zr h bar was achieved on the POPs-supported catalysts, especially when high Al/Zr ratios on the catalysts were obtained. The performance of the immobilized metallocene catalysts was highly related to the pore structure and functional group on the POP frameworks.
More
Translated text
Key words
porous organic polymer (POP),metallocene catalyst,ethylene polymerization,pore structure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined