The structure of monoamine oxidases: past, present, and future

Journal of Neural Transmission(2018)

引用 31|浏览20
暂无评分
摘要
The first crystal structure of mammalian monoamine oxidases (MAOs) was solved in 2002; almost 65 years after, these FAD-dependent enzymes were discovered and classified as responsible for the oxidation of aromatic neurotransmitters. Both MAO A and MAO B feature a two-domain topology characterized by the Rossmann fold, interacting with dinucleotide cofactors, which is intimately associated to a substrate-binding domain. This globular body is endowed with a C-terminal α-helix that anchors the protein to the outer mitochondrial phospholipid bilayer. As monotopic membrane proteins, the structural elucidation of MAOs was a challenging task that required the screening of different detergent conditions for their purification and crystallization. MAO A and MAO B structures differ both in their oligomerization architecture and in details of their active sites. Purified human MAO B and rat MAO A are dimeric, whereas human MAO A was found to be monomeric, which is believed to result from the detergent treatments used to extract the protein from the membrane. The active site of MAOs consists of a hydrophobic cavity located in front of the flavin cofactor and extending to the protein surface. Some structural features are highly conserved in the two isozymes, such as a Tyr–Tyr aromatic sandwich in front of the flavin ring and a Lys residue hydrogen-bonded to the cofactor N5 atom, whereas a pair of gating residues (Phe208/Ile335 in MAO A; Ile199/Tyr326 in MAO B) specifically determines the different substrate and inhibitor properties of the two enzymes.
更多
查看译文
关键词
Amine oxidase,Membrane protein,Mitochondrial membrane,Enzyme active site,Inhibitor,Drug design,Flavin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要