Observationally constrained analysis of sea salt aerosol in the marine atmosphere

Atmospheric Chemistry and Physics(2019)

引用 42|浏览87
暂无评分
摘要
Abstract. Atmospheric sea salt plays important roles in marine cloud formation and atmospheric chemistry. We performed an integrated analysis of NASA GEOS model simulations run with the GOCART aerosol module, in situ measurements from the PALMS and SAGA instruments obtained during the NASA ATom campaign, and aerosol optical depth (AOD) measurements from AERONET Marine Aerosol Network (MAN) sun photometers and from MODIS satellite observations to better constrain sea salt in the marine atmosphere. ATom measurements and GEOS model simulation both show that sea salt concentrations over the Pacific and Atlantic oceans have a strong vertical gradient, varying up to four orders of magnitude from the marine boundary layer to free troposphere. The modeled residence times suggest that the lifetime of sea salt particles with dry diameter less than 3 μm is largely controlled by wet removal, followed next by turbulent process. During both boreal summer and winter, the GEOS simulated sea salt mass mixing ratios agree with SAGA measurements in the marine boundary layer (MBL) and with PALMS measurements above the MBL. However, comparison of AOD from GEOS with AERONET/MAN and MODIS aerosol retrievals indicated that the model underestimated AOD over the oceans where sea salt dominates. The apparent discrepancy of slightly overpredicted concentration and large underpredicted AOD could not be explained by biases in the model RH, which was found to be comparable to or larger than the in-situ measurements. This conundrum is at least partially explained by the sea salt size distribution; where the GEOS simulation has much less sea salt percentage-wise in the smaller particles than was observed by PALMS. Model sensitivity experiments indicated that the simulated sea salt is better correlated with measurements when the sea salt emission is calculated based on the friction velocity and with consideration of sea surface temperature dependence than that parameterized with the 10-m winds.
更多
查看译文
关键词
marine atmosphere,aerosol,sea salt
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要