Biopolymers from a Bacterial Extracellular Matrix Affect the Morphology and Structure of Calcium Carbonate Crystals

CRYSTAL GROWTH & DESIGN(2018)

引用 31|浏览6
暂无评分
摘要
Biomineralization is a mineral precipitation process occurring in the presence of organic molecules and used by various organisms to serve a structural and/or a functional role. Many biomineralization processes occur in the presence of extracellular matrices that are composed of proteins and polysaccharides. Recently, there is growing evidence that bacterial biofilms induce CaCO3 mineralization and that this process may be related with their extracellular matrix (ECM). In this study we explore, in vitro, the effect of two bacterial ECM proteins, TasA and TapA, and an exopolysaccharide, EPS, on calcium carbonate crystallization. We have found that all the three biopolymers induce the formation of complex CaCO3 structures. The crystals formed in the presence of the EPS are very diverse in morphology and they are either calcite or vaterite in structure. However, more uniformly sized calcite crystals are formed in the presence of the proteins; these crystals are composed of single crystalline domains that assemble together into spherulites (in the presence of TapA) or dumbbell-like shapes (in the presence of TasA). Our results suggest the EPS affects the nucleation of calcium carbonate when it induces the formation of vaterite crystals and that unlike EPS, the proteins stabilize preformed calcite nuclei and induce their aggregation into complex calcite structures. Biomineralization processes induced by bacterial ECM macromolecules make biofilms more robust and difficult to remove when they form, for example, on pipes and filters in water desalination systems or on ship hulls. Understanding the formation conditions and mechanism of formation of calcium carbonate in the presence of bacterial biopolymers may lead to the design of suitable mineralization inhibitors.
更多
查看译文
关键词
Biomineralization,Biocementation,Crystallization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要