Effect of feeding and thermal stress on photosynthesis, respiration and the carbon budget of the scleractinian coral Pocillopora damicornis

Marine Ecology Progress Series(2018)

引用 5|浏览22
暂无评分
摘要
Studying carbon dynamics in the coral holobiont provides essential knowledge of nutritional strategies and is thus central to understanding coral ecophysiology. In this study, the first aim was to investigate the effect of daily feeding and thermal stress on oxygen (O2) rates measured at polyp-scale with microsensors and at whole fragment scale using incubation methods. The second aim was to assess the carbon budget of the symbiotic association using H13CO3, under the different conditions. Micro- and macro-scale measurements revealed enhanced O2 evolution rates for fed compared to unfed corals. However, gross O2 production in fed corals was increased at high temperature on a macroscale but not on a microscale basis, likely due to a heterogeneous distribution of photosynthesis over the coral surface. Starved corals always exhibited reduced photosynthetic activity at high temperature, which suggests that the nutritional status of the coral host is a key limiting factor for coral productivity under thermal stress. Quantification of photosynthate translocation and carbon budgets showed very low incorporation rates, for both symbionts and host (0.03 - 0.6 μg C cm-2 h-1) equivalent to only 0.008 - 0.6 %, of the photosynthetically fixed carbon for P. damicornis , in all treatments. Carbon loss (via respiration and/or mucus release) was about 41 - 47 % and 52 - 76% of the fixed carbon for starved and fed corals, respectively. Such high loss of translocated carbon suggests that P. damicornis is nitrogen and/or phosphorus limited. Heterotrophy might thus cover a larger portion of the nutritional demand for P. damicornis than previously assumed. Our results suggest that active feeding plays a fundamental role in metabolic dynamics and bleaching susceptibility of corals.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要