谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility

Frontiers of Physics in China(2018)

引用 14|浏览4
暂无评分
摘要
High carrier mobility and a direct semiconducting band gap are two key properties of materials for electronic device applications. Using first-principles calculations, we predict two types of two-dimensional semiconductors, ultrathin GeAsSe and SnSbTe nanosheets, with desirable electronic and optical properties. Both GeAsSe and SnSbTe sheets are energetically favorable, with formation energies of –0.19 and –0.09 eV/atom, respectively, and have excellent dynamical and thermal stability, as determined by phonon dispersion calculations and Born–Oppenheimer molecular dynamics simulations. The relatively weak interlayer binding energies suggest that these monolayer sheets can be easily exfoliated from the bulk crystals. Importantly, monolayer GeAsSe and SnSbTe possess direct band gaps (2.56 and 1.96 eV, respectively) and superior hole mobility (~ 20 000 cm 2 ∙V –1 ∙s –1 ), and both exhibit notable absorption in the visible region. A comparison of the band edge positions with the redox potentials of water reveals that layered GeAsSe and SnSbTe are potential photocatalysts for water splitting. These exceptional properties make layered GeAsSe and SnSbTe promising candidates for use in future high-speed electronic and optoelectronic devices.
更多
查看译文
关键词
2D GeAsSe and SnSbTe,carrier mobility,photocatalysts,DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要