Infectious bronchitis virus attaches to lipid rafts and enters cells via clathrin mediated endocytosis

bioRxiv(2018)

引用 2|浏览8
暂无评分
摘要
Due to its economic importance to in poultry industry, the biology and pathogenesis of infectious bronchitis virus (IBV) have been investigated extensively. However, the molecular mechanisms involved in IBV entry are not well characterized. In this study, systematic approaches were used to dissect IBV entry process in various susceptible cells. First, we observed that lipid rafts were involved in IBV attachment. Second, low pH in intracyplasmic vesicles was required for virus entry. By using the specific clathrin mediated endocytosis (CME) inhibitor or knock down of clathrin heavy chain (CHC), we demonstrated that IBV mainly utilized the CME for its entry. Furthermore, GTPase dynamin1 was involved in virus containing vesicle scission and internalization. Surprisingly, CME adaptor Eps15 had no effect on IBV internalization. Third, the penetration of IBV into cells led to active cytoskeleton rearrangement. After internalization, virus particles moved along with the classical endosome/lysosome track, as evidenced by co-localization of R18 labeled IBV with vehicle markers Rab5/Rab7/LAMP1 along with the infection time course. Functional inactivation of Rab5 and Rab7 significantly inhibited IBV infection. VCP, a protein helps early endosome maturation, was involved virus trafficking. Finally, by using the dual R18/DiOC labeled IBV, we observed that membrane fusion with late endosome/lysosome membranes was induced between 2-3 h.p.i.. Taken together, our findings demonstrate that IBV virions attach to lipid rafts and are internalized into cells via CME, move along with early/late endosomes-lysosomes, finally fuse with late endosome-lysosome membranes, release virus genome into cytoplasm. This study provides comprehensive images of IBV attachment-internalization-trafficking-fusion steps.
更多
查看译文
关键词
virus entry,lipid rafts,CME,trafficking,endosome,fusion,IBV,clathrin mediated endocytosis,internalization,trafficking,endosome,membrane fusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要