Insight into the Evolution of Ordered Mesoporous sp2 Carbonaceous Material Derived from Self-Assembly of a Block Copolymer

ACS Applied Materials & Interfaces(2022)

Cited 0|Views2
No score
Abstract
Block-copolymer-derived ordered mesoporous carbon (OMC) materials have great potential in many applications, such as adsorption, catalysis, and energy conversions; however, their formation process and the kinetic mechanism remain unclear. Herein, a N-doped OMC (N-OMC) with sp2-bonded C atoms is developed via self-assembly of the polystyrene-block-poly(4-vinyl pyridine) block copolymer. By correlating the external morphologies with the internal chemical states, the formation process can be concluded as follows: (1) pore evolution via polystyrene domain degradation and (2) regularization and graphitization of the residual carbon via the removal of sp3 C atoms. In addition, the thickness of the N-OMC shows a power function relationship with the spin-coating rate, and the N content can be incredibly increased up to 26.34 at. % in an NH3 carbonization atmosphere. With the as-prepared N-OMC as the support for loading of the pseudo-atomic-scale Pt (Pt/N-OMC), a high electrochemical active surface area value of 99.64 m2·g-1 and a half-wave potential (E1/2) of 0.850 VRHE are achieved, showing great potential in developing single-atom electrocatalysts.
More
Translated text
Key words
ordered mesoporous sp<sup>2</sup>,carbonaceous material,block copolymer,self-assembly
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined