Roles for tubulin recruitment and self-organization by TOG domain arrays in Microtubule plus-end tracking and polymerase

bioRxiv(2018)

Cited 0|Views4
No score
Abstract
The XMAP215/Stu2/Alp14 microtubule polymerases utilize Tumor Overexpressed Gene (TOG) domain arrays to accelerate microtubule plus-end polymerization. Structural studies suggest a microtubule polymerase model in which TOG arrays recruit four αβ-tubulins, forming large square assemblies; an array of TOG1 and TOG2 domains may then unfurl from the square state to polymerize two αβ-tubulins into protofilaments at microtubule ends. Here, we test this model using two biochemically characterized classes of fission yeast Alp14 mutants. Using in vitro reconstitution and in vivo live cell imaging, we show that αβ-tubulins recruited by TOG1 and TOG2 domains serve non-additive roles in microtubule plus-end tracking and polymerase activities. Alp14 mutants with inactivated square assembly interfaces have defects in processive plus-end tracking and poor microtubule polymerase, indicating a functional role for square assemblies in processive tracking. These studies provide functional insights into how TOG1 and TOG2 domain arrays recruit tubulins and promote polymerase at microtubule plus ends
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined