Effects of gap junction misexpression on synapses between auditory sensory neurons and the giant fiber of Drosophila melanogaster.

bioRxiv(2018)

引用 0|浏览3
暂无评分
摘要
The synapse between auditory Johnstonu0027s Organ neurons (JONs) and the giant fiber (GF) of Drosophila is structurally mixed, being composed of cholinergic chemical synapses and Neurobiotin- (NB) permeable gap junctions, which consist of the innexin Shaking-B (ShakB). Misexpression of one ShakB isoform, ShakB(N+16), in a subset of JONs that do not normally form gap junctions, results in their de novo dye coupling to the GF. This is similar to the effect of misexpression of the transcription factor Engrailed (En) in these same neurons, which also causes the formation of additional chemical synapses. In order to test the hypothesis that ShakB misexpression would similarly affect the distribution of chemical synapses, fluorescently-labeled presynaptic active zone protein (Brp) was expressed in JONs and the changes in its distribution were assayed with confocal microscopy. Both ShakB(N+16) and En increased the dye-coupling of JONs with the GF, indicating the formation of ectopic gap junctions. Conversely, expression of the u0027incorrectu0027 isoform, ShakB(N) abolishes dye coupling. However, while En misexpression increased the chemical contacts with the GF and the amount of GF medial branching, ShakB misexpression did not. ShakB immunocytochemistry showed that misexpression of ShakB(N+16) increases gap junctional plaques in JON axons but ShakB(N) does not. We conclude that both subsets of JON form chemical synapses onto the GF dendrites but only one population forms gap junctions, comprised of ShakB(N+16). Misexpression of this isoform in all JONs does not result in the formation of new mixed synapses but in the insertion of gap junctions, presumably at the sites of existing chemical synaptic contacts with the GF.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要