Structural differences between single crystal and polycrystalline UBe13

PHILOSOPHICAL MAGAZINE(2018)

引用 6|浏览45
暂无评分
摘要
We report on observations of structural and chemical differences between samples of UBe13 that were synthesised using two different methods. Unexplained discrepancies in properties between samples with differing synthesis had previously been found in this heavy fermion superconductor. A polycrystalline UBe13 sample was made by arc-melting the constituents. Single crystals were grown using an aluminium flux and had a consistently slightly larger lattice parameter than the polycrystals, which merited further study. Neutron diffraction data were collected at the Lujan Center at LANSCE on the HIPPO diffractometer. Aluminium was detected by inductively coupled plasma mass spectrometry (ICP-MS) in the flux-grown single crystal (0.803 wt%), and small amounts (similar to 0.2 wt%) of thorium were detected in the UBe13 polycrystalline sample. In order to probe the implications of the presence of Al, calculations by spin-polarised DFT-GGA+U show that the incorporation of Al onto the 96i site (the lowest symmetry site in the structure) is energetically more favourable than on other sites. In general, the trends calculated by DFT for bond lengths and lattice parameter increases are consistent with bond lengths experimentally observed by neutron diffraction, but specific percentage changes with aluminium incorporation may be obscured by the unexpected thorium in the polycrystalline sample. The aggregate of our initial observations suggests that incorporation of aluminium from the flux into single crystal UBe13 is significant.
更多
查看译文
关键词
Heavy fermion,synthesis,impurities,crystal,neutron diffraction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要