Cohesin interacts with a panoply of splicing factors required for cell cycle progression and genomic organization

bioRxiv(2018)

引用 1|浏览64
暂无评分
摘要
The cohesin complex regulates sister chromatid cohesion, chromosome organization, gene expression, and DNA repair. Here we report that endogenous human cohesin interacts with a panoply of splicing factors and RNA binding proteins, including diverse components of the U4/U6.U5 tri-snRNP complex and several splicing factors that are commonly mutated in cancer. The interactions are enhanced during mitosis, and the interacting splicing factors and RNA binding proteins follow the cohesin cycle and prophase pathway of regulated interactions with chromatin. Depletion of cohesin-interacting splicing factors results in stereotyped cell cycle arrests and alterations in genomic organization. These data support the hypothesis that splicing factors and RNA binding proteins control cell cycle progression and genomic organization via regulated interactions with cohesin and chromatin.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要