Mobile-CRISPRi: Enabling Genetic Analysis of Diverse Bacteria

Nature Microbiology(2018)

Cited 103|Views57
No score
Abstract
The vast majority of bacteria, including human pathogens and microbiome species, lack genetic tools needed to systematically associate genes with phenotypes. This is the major impediment to understanding the fundamental contributions of genes and gene networks to bacterial physiology and human health. CRISPRi, a versatile method of blocking gene expression using a catalytically inactive Cas9 protein (dCas9) and programmable single guide RNAs (sgRNAs), has emerged as a powerful genetic tool to dissect the functions of essential and non-essential genes in species ranging from bacteria to human. However, the difficulty of establishing effective CRISPRi systems in non-model bacteria is a major barrier to its widespread use to dissect bacterial gene function. Here, we establish “Mobile-CRISPRi”, a suite of CRISPRi systems that combine modularity, stable genomic integration and ease of transfer to diverse bacteria by conjugation. Focusing predominantly on human pathogens associated with antibiotic resistance, we demonstrate the efficacy of Mobile-CRISPRi in Proteobacteria and Firmicutes at the individual gene scale by examining drug-gene synergies and at the library scale by systematically phenotyping conditionally essential genes involved in amino acid biosynthesis. Mobile-CRISPRi enables genetic dissection of non-model bacteria, facilitating analyses of microbiome function, antibiotic resistances and sensitivities, and comprehensive screens for host-microbe interactions.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined