谷歌浏览器插件
订阅小程序
在清言上使用

Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell

Journal of Membrane Science(2018)

引用 106|浏览9
暂无评分
摘要
Crosslinked metal oxide containing nanocomposite membranes, in which the filler also acts as crosslinker, were prepared by blending polybenzimidazole (PBI-OO) and phenylsulfonated TiO2 particles (s-TiO2). Thermal curing changes the ionically crosslinked system into a covalently crosslinked system. The synthesized s-TiO2 nanoparticles were analyzed by thermal gravimetric analysis and scanning electron microscopy. The covalently crosslinked nanocomposite membranes (c-sTiO2-PBI-OO) were doped with phosphoric acid (PA) for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The membrane properties, such as PA uptake, dimensional change, gel content, proton conductivity, mechanical property, and single cell performance were evaluated and compared with the properties of acid-doped c-PBI-OO. PA doped 6-c-sTiO2-PBI-OO (6 wt% sTiO2) showed the highest uptake of 392 wt%, and a proton conductivity at 160 °C of 98 mS cm−1. In the fuel cell, a peak power density of 356 mW cm−2 was obtained, which is 76% higher than that of a c-PBI-OO based system (202 mW cm−2). To evaluate the stability of the membrane performance over time, the best performing membrane was tested for over 700 h.
更多
查看译文
关键词
HT-PEMFC,Nanocomposite membrane,PBI-OO,Sulfophenylated TiO2,Thermal crosslinking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要