Influence Of Substrates And Rutile Seed Layers On The Assembly Of Hydrothermally Grown Rutile Ti(O2 )Nanorod Arrays

JOURNAL OF CRYSTAL GROWTH(2018)

引用 11|浏览34
暂无评分
摘要
Rutile TiO2 nanorod arrays (NRAs) are applicable in various prospective technologies. Hydrothermal methods present a simple technique to fabricate such NRAs. In this report, we present the fabrication of seed layers for the hydrothermal growth of rutile TiO2 nanorods via sputter deposition, electronbeam evaporation, and sol-gel method and study the influence of each on the growth behavior. To satisfy the requirements of numerous applications, p-type silicon, platinum, levitating carbon membranes, a template made of polystyrene spheres, and commercial fluorine tin oxide (FTO) were employed as substrates. We document the structural properties of the TiO2 seed layers and describe the relationship between the characteristics of the seed crystals, the growth evolution, and the appearance of as-grown nanorods. Various growth stages of rutile TiO2 nanorods are compared depending on whether they are grown on polycrystalline TiO2 or FTO seed layers. In both cases, a homogenous TiO2 bottom layer is formed at the seed layer/substrate interface, which is essential for electronic applications such as hybrid solar cells. Detached NRAs illustrate the effect of rutile FTO and TiO2 on the porosity of this bottom layer. Further details about the formation process of this layer are obtained from the growth on confined seed layers fabricated by electron-beam lithography. (C) 2018 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Crystal morphology,Nanostructures,Nucleation,Hydrothermal crystal growth,Seed crystals,Oxides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要