Chrome Extension
WeChat Mini Program
Use on ChatGLM

Deep neural networks for energy and position reconstruction in EXO-200

Journal of Instrumentation(2018)

Cited 27|Views22
No score
Abstract
We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo.
More
Translated text
Key words
Analysis and statistical methods,Double-beta decay detectors,Pattern recognition,cluster finding,calibration and fitting methods,Time projection chambers
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined