Emergence of the erythroid lineage from multipotent hematopoiesis

bioRxiv(2018)

引用 3|浏览33
暂无评分
摘要
Red cell formation begins with the hematopoietic stem cell, but the manner by which it gives rise to erythroid progenitors, and their subsequent developmental path, remain unclear. Here we combined single-cell transcriptomics of murine hematopoietic tissues with fate potential assays to infer a continuous yet hierarchical structure for the hematopoietic network. We define the erythroid differentiation trajectory as it emerges from multipotency and diverges from 6 other blood lineages. With the aid of a new flow-cytometric sorting strategy, we validated predicted cell fate potentials at the single cell level, revealing a coupling between erythroid and basophil/mast cell fates. We uncovered novel growth factor receptor regulators of the erythroid trajectory, including the proinflammatory IL- 17RA, found to be a strong erythroid stimulator; and identified a global hematopoietic response to stress erythropoiesis. We further identified transcriptional and high-purity FACS gates for the complete isolation of all classically-defined erythroid burst-forming (BFU-e) and colony-forming progenitors (CFU-e), finding that they express a dedicated transcriptional program, distinct from that of terminally-differentiating erythroblasts. Intriguingly, profound remodeling of the cell cycle is intimately entwined with CFU-e developmental progression and with a sharp transcriptional switch that extinguishes the CFU-e stage and activates terminal differentiation. Underlying these results, our work showcases the utility of theoretic approaches linking transcriptomic data to predictive fate models, providing key insights into lineage development in vivo.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要