Lipid perturbation-activated IRE-1 modulates autophagy and lipolysis during endoplasmic reticulum stress

Journal of Cell Science(2018)

引用 4|浏览1
暂无评分
摘要
Metabolic disorders such as obesity and nonalcoholic fatty liver disease (NAFLD) are emerging diseases that affect the global population. One facet of these disorders is attributed to the disturbance of membrane lipid composition. Perturbation of endoplasmic reticulum (ER) homeostasis through changes in membrane phospholipid composition results in activation of the unfolded protein response (UPR) and causes dramatic translational and transcriptional changes in the cell. To restore cellular homeostasis, the three highly conserved UPR transducers ATF6, IRE1, and PERK mediate cellular processes upon ER stress. The role of the UPR in proteotoxic stress caused by the accumulation of misfolded proteins is well understood but much less so under lipid perturbation-induced UPR (UPRLP). We found that genetically disrupted phosphatidylcholine synthesis in C. elegans causes, lipid perturbation, lipid droplet accumulation, and induced ER stress, all hallmarks of NAFLD. Transcriptional profiling of UPRLP animals shows a unique subset of genes modulated in an UPR-dependent manner that is unaffected by proteotoxic stress (UPRPT). Among these, we identified autophagy genes bec-1 and lgg-1 and the lipid droplet-associated lipase atgl-1 to be modulated by IRE-1. Considering the important role of lipid homeostasis and how its impairment contributes to the pathology of metabolic diseases, our data uncovers the indispensable role of a fully functional UPR program in regulating lipid homeostasis in the face of chronic ER stress and lipotoxicity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要