Local climate controls among-population variation in germination patterns in two Erica species across western Iberia

SEED SCIENCE RESEARCH(2018)

Cited 13|Views8
No score
Abstract
In seasonal climates, germination timing is mainly controlled by temperature, especially in species with physiological seed dormancy. The germination response to temperature may, however, vary among populations across the distribution range of species. Understanding how populations along climate gradients vary in their sensitivity to temperature is important for determining their vulnerability to climate variability and change. Here, we investigated the germination response of two Erica species with physiological seed dormancy (E. australis and E. umbellata) to changes in temperature throughout the seasons (simulated autumn through to spring) and to the local climate in six localities across a latitudinal gradient in western Iberia. Effects were studied with and without exposing the seeds to a heat shock. The local climate of seed provenance emerged as a key factor in modifying the germination sensitivity to germination temperature and their variation through the seasons. Although each species showed idiosyncratic germination responses to temperature treatments and across the gradient, germination of both species was sensitive to warmer temperatures and to a heat shock. Both showed similar seasonal germination patterns: as we moved from south to north, populations tended to have a larger germination peak in spring, which was greater at colder temperatures. We conclude that rising temperatures associated with climate change will affect these species, particularly at their northern ranges, where many seeds will remain dormant during warmer winters. Arguably, models aiming at assessing climate change impacts in these species need to include such variability across latitude.
More
Translated text
Key words
adaptation,climate change,Erica,germination plasticity,germination seasonality,germination temperature,latitudinal gradient,physiological dormancy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined