Chrome Extension
WeChat Mini Program
Use on ChatGLM

Application Of The Hybrid Simulation Method For The Full-Scale Precast Reinforced Concrete Shear Wall Structure

APPLIED SCIENCES-BASEL(2018)

Cited 12|Views9
No score
Abstract
The hybrid simulation (HS) testing method combines physical test and numerical simulation, and provides a viable alternative to evaluate the structural seismic performance. Most studies focused on the accuracy, stability and reliability of the HS method in the small-scale tests. It is a challenge to evaluate the seismic performance of a twelve-story pre-cast reinforced concrete shear-wall structure using this HS method which takes the full-scale bottom three-story structural model as the physical substructure and the elastic non-linear model as the numerical substructure. This paper employs an equivalent force control (EFC) method with implicit integration algorithm to deal with the numerical integration of the equation of motion (EOM) and the control of the loading device. Because of the arrangement of the test model, an elastic non-linear numerical model is used to simulate the numerical substructure. And non-subdivision strategy for the displacement inflection point of numerical substructure is used to easily realize the simulation of the numerical substructure and thus reduce the measured error. The parameters of the EFC method are calculated basing on analytical and numerical studies and used to the actual full-scale HS test. Finally, the accuracy and feasibility of the EFC-based HS method is verified experimentally through the substructure HS tests of the pre-cast reinforced concrete shear-wall structure model. And the testing results of the descending stage can be conveniently obtained from the EFC-based HS method.
More
Translated text
Key words
equivalent force control,hybrid simulation,full-scale,nonlinear seismic performance,descent stage
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined