Flying under the radar: Histoplasma capsulatum avoidance of innate immune recognition

Seminars in Cell & Developmental Biology(2019)

Cited 34|Views5
No score
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum takes advantage of the innate immune system, utilizing host macrophages as a proliferative niche while largely avoiding stimulation of signaling host receptors. As a result, innate immune cells are unable to control H. capsulatum on their own. Not all host phagocytes respond to H. capsulatum in the same way, with neutrophils and dendritic cells playing important roles in impeding fungal growth and initiating a protective TH1 response, respectively. Dendritic cells prime T-cell differentiation after internalization of yeasts via VLA-5 receptors and subsequent degradation of the yeasts. Dendritic cell-expressed TLR7 and TLR9 promote a type I interferon response for TH1 polarization. In contrast to dendritic cells, macrophages provide a hospitable intracellular environment. H. capsulatum yeasts enter macrophages via binding to phagocytic receptors. Simultaneously, α-glucan masks immunostimulatory cell wall β-glucans and a secreted endoglucanase removes exposed β-glucans to minimize recognition of yeasts by Dectin-1. This review highlights how phagocytes interact with H. capsulatum yeasts and the mechanisms H. capsulatum uses to limit the innate immune response.
More
Translated text
Key words
Fungal pathogenesis,Dimorphism,Cell wall,β-glucan,Dectin-1,Complement receptor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined