The new 2D Superresolution mode for ZEISS Airyscan

Joseph Huff, Annette Bergter, Jan Birkenbeil, Ingo Kleppe, Ralf Engelmann,Uros Krzic

NATURE METHODS(2017)

Cited 48|Views10
No score
Abstract
Utilizing a pinhole-plane imaging concept, Airyscan allows for simultaneous improvement in resolution and signal-to-noise by capitalizing on an innovative 32-channel GaAsP photomultiplier tube (PMT) array detector. Each detection channel functions as a very small pinhole to increase resolution while the overall detector design delivers better signal-to-noise than traditional GaAsP-based confocal systems. In the past, a stack of at least five z -slices had to be deconvolved to get usable images with an optical section thinner than 1 Airy unit. Now, the new 2D Superresolution mode for Airyscan delivers images with the thinnest optical section (0.2 Airy units) from a single image while maintaining the light collection efficiency of a much larger 1.25-Airy-unit pinhole.
More
Translated text
Key words
Confocal microscopy,Medical imaging,Life Sciences,general,Biological Techniques,Biological Microscopy,Biomedical Engineering/Biotechnology,Bioinformatics,Proteomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined