Chrome Extension
WeChat Mini Program
Use on ChatGLM

Solid-state dewetting of single-crystal silicon on insulator: effect of annealing temperature and patch size

Microelectronic Engineering(2018)

Cited 9|Views59
No score
Abstract
We address the solid state dewetting of ultra-thin and ultra-large patches of monocrystalline silicon on insulator. We show that the underlying instability of the thin Si film under annealing can be perfectly controlled to form monocrystalline, complex nanoarchitectures extending over several microns. These complex patterns are obtained guiding the dewetting fronts by etching ad-hoc patches prior to annealing. They can be reproduced over hundreds of repetitions extending over hundreds of microns. We discuss the effect of annealing temperature and patch size on the stability of the final result of dewetting showing that for simple patches (e.g. simple squares) the final outcome is stable and well reproducible at 720°C and for ~1μm square size. Finally, we demonstrate that introducing additional features within squared patches (e.g. a hole within a square) stabilises the dewetting dynamic providing perfectly reproducible complex nanoarchitectures of 5μm size.
More
Translated text
Key words
Solid-state dewetting,Nano-patterning,Ultra-thin silicon on insulator
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined